Graph Clustering

109 papers with code • 10 benchmarks • 18 datasets

Graph Clustering is the process of grouping the nodes of the graph into clusters, taking into account the edge structure of the graph in such a way that there are several edges within each cluster and very few between clusters. Graph Clustering intends to partition the nodes in the graph into disjoint groups.

Source: Clustering for Graph Datasets via Gumbel Softmax

Most implemented papers

Variational Graph Auto-Encoders

tkipf/gae 21 Nov 2016

We introduce the variational graph auto-encoder (VGAE), a framework for unsupervised learning on graph-structured data based on the variational auto-encoder (VAE).

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

google-research/google-research KDD 2019

Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99. 36 on the PPI dataset, while the previous best result was 98. 71 by [16].

Adversarially Regularized Graph Autoencoder for Graph Embedding

Ruiqi-Hu/ARGA 13 Feb 2018

Graph embedding is an effective method to represent graph data in a low dimensional space for graph analytics.

Spectral Clustering with Graph Neural Networks for Graph Pooling

FilippoMB/Spectral-Clustering-with-Graph-Neural-Networks-for-Graph-Pooling ICML 2020

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph.

Ensemble Clustering for Graphs

ftheberge/graph-partition-and-measures 14 Sep 2018

We also illustrate how the ensemble obtained with ECG can be used to quantify the presence of community structure in the graph.

Optimal Transport for structured data with application on graphs

rflamary/POT 23 May 2018

This work considers the problem of computing distances between structured objects such as undirected graphs, seen as probability distributions in a specific metric space.

Hierarchical Graph Clustering using Node Pair Sampling

tbonald/paris 5 Jun 2018

We present a novel hierarchical graph clustering algorithm inspired by modularity-based clustering techniques.

Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction

nlpub/watset-java CL 2019

We present a detailed theoretical and computational analysis of the Watset meta-algorithm for fuzzy graph clustering, which has been found to be widely applicable in a variety of domains.

Ensemble Clustering for Graphs: Comparisons and Applications

ftheberge/graph-partition-and-measures 19 Mar 2019

We recently proposed a new ensemble clustering algorithm for graphs (ECG) based on the concept of consensus clustering.

Attributed Graph Clustering: A Deep Attentional Embedding Approach

Tiger101010/DAEGC 15 Jun 2019

Graph clustering is a fundamental task which discovers communities or groups in networks.