Graph Neural Network

1474 papers with code • 1 benchmarks • 0 datasets

This task has no description! Would you like to contribute one?

Most implemented papers

SuperGlue: Learning Feature Matching with Graph Neural Networks

magicleap/SuperGluePretrainedNetwork CVPR 2020

This paper introduces SuperGlue, a neural network that matches two sets of local features by jointly finding correspondences and rejecting non-matchable points.

Hierarchical Graph Representation Learning with Differentiable Pooling

dmlc/dgl NeurIPS 2018

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction.

GNNExplainer: Generating Explanations for Graph Neural Networks

RexYing/gnn-model-explainer NeurIPS 2019

We formulate GNNExplainer as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures.

Link Prediction Based on Graph Neural Networks

muhanzhang/SEAL NeurIPS 2018

The theory unifies a wide range of heuristics in a single framework, and proves that all these heuristics can be well approximated from local subgraphs.

Inductive Relation Prediction by Subgraph Reasoning

kkteru/grail ICML 2020

The dominant paradigm for relation prediction in knowledge graphs involves learning and operating on latent representations (i. e., embeddings) of entities and relations.

Graph Neural Networks for Social Recommendation

wenqifan03/GraphRec-WWW19 19 Feb 2019

These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key.

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

nnzhan/Graph-WaveNet 31 May 2019

Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system.

KGAT: Knowledge Graph Attention Network for Recommendation

xiangwang1223/knowledge_graph_attention_network 20 May 2019

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account.

Few-Shot Learning with Graph Neural Networks

vgsatorras/few-shot-gnn 10 Nov 2017

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not.