Image Segmentation

866 papers with code • 2 benchmarks • 7 datasets

This task has no description! Would you like to contribute one?

Libraries

Use these libraries to find Image Segmentation models and implementations
20 papers
6,091
8 papers
1,231
5 papers
2,713
See all 18 libraries.

Most implemented papers

U-Net: Convolutional Networks for Biomedical Image Segmentation

labmlai/annotated_deep_learning_paper_implementations 18 May 2015

There is large consent that successful training of deep networks requires many thousand annotated training samples.

MobileNetV2: Inverted Residuals and Linear Bottlenecks

tensorflow/models CVPR 2018

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes.

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

PaddlePaddle/PaddleSeg 2 Nov 2015

We show that SegNet provides good performance with competitive inference time and more efficient inference memory-wise as compared to other architectures.

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

tensorflow/models ECCV 2018

The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information.

Rethinking Atrous Convolution for Semantic Image Segmentation

tensorflow/models 17 Jun 2017

To handle the problem of segmenting objects at multiple scales, we design modules which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates.

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

tensorflow/models 2 Jun 2016

ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales.

Attention U-Net: Learning Where to Look for the Pancreas

ozan-oktay/Attention-Gated-Networks 11 Apr 2018

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes.

UNet++: A Nested U-Net Architecture for Medical Image Segmentation

MrGiovanni/Nested-UNet 18 Jul 2018

Implementation of different kinds of Unet Models for Image Segmentation - Unet , RCNN-Unet, Attention Unet, RCNN-Attention Unet, Nested Unet

V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

faustomilletari/VNet 15 Jun 2016

Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields.

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation

SimJeg/FC-DenseNet 28 Nov 2016

State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs).