Probabilistic Programming

75 papers with code • 0 benchmarks • 0 datasets

Probabilistic programming languages are designed to describe probabilistic models and then perform inference in those models. PPLs are closely related to graphical models and Bayesian networks, but are more expressive and flexible.

( Image credit: Michael Betancourt )


Use these libraries to find Probabilistic Programming models and implementations
2 papers
2 papers

Most implemented papers

TensorFlow Distributions

tensorflow/probability 28 Nov 2017

The TensorFlow Distributions library implements a vision of probability theory adapted to the modern deep-learning paradigm of end-to-end differentiable computation.

Inference Compilation and Universal Probabilistic Programming

pyprob/pyprob 31 Oct 2016

We introduce a method for using deep neural networks to amortize the cost of inference in models from the family induced by universal probabilistic programming languages, establishing a framework that combines the strengths of probabilistic programming and deep learning methods.

Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model

pyprob/pyprob NeurIPS 2019

We present a novel probabilistic programming framework that couples directly to existing large-scale simulators through a cross-platform probabilistic execution protocol, which allows general-purpose inference engines to record and control random number draws within simulators in a language-agnostic way.

An Introduction to Probabilistic Programming

hongseok-yang/probprog19 27 Sep 2018

We start with a discussion of model-based reasoning and explain why conditioning is a foundational computation central to the fields of probabilistic machine learning and artificial intelligence.

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

pyprob/pyprob 8 Jul 2019

Probabilistic programming languages (PPLs) are receiving widespread attention for performing Bayesian inference in complex generative models.

Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro

pyro-ppl/numpyro 24 Dec 2019

NumPyro is a lightweight library that provides an alternate NumPy backend to the Pyro probabilistic programming language with the same modeling interface, language primitives and effect handling abstractions.

Scenic: A Language for Scenario Specification and Scene Generation

BerkeleyLearnVerify/Scenic 25 Sep 2018

We propose a new probabilistic programming language for the design and analysis of perception systems, especially those based on machine learning.

Sinkhorn AutoEncoders

jaberkow/TensorFlowSinkhorn ICLR 2019

We show that minimizing the p-Wasserstein distance between the generator and the true data distribution is equivalent to the unconstrained min-min optimization of the p-Wasserstein distance between the encoder aggregated posterior and the prior in latent space, plus a reconstruction error.

Automatic structured variational inference

google-research/google-research 3 Feb 2020

However, the performance of the variational approach depends on the choice of an appropriate variational family.