Speaker Diarization

24 papers with code • 1 benchmarks • 6 datasets

Speaker Diarization is the task of segmenting and co-indexing audio recordings by speaker. The way the task is commonly defined, the goal is not to identify known speakers, but to co-index segments that are attributed to the same speaker; in other words, diarization implies finding speaker boundaries and grouping segments that belong to the same speaker, and, as a by-product, determining the number of distinct speakers. In combination with speech recognition, diarization enables speaker-attributed speech-to-text transcription.

Source: Improving Diarization Robustness using Diversification, Randomization and the DOVER Algorithm

Paper Code Results Date Stars