Unsupervised Facial Landmark Detection

5 papers with code • 5 benchmarks • 4 datasets

Facial landmark detection in the unsupervised setting popularized by [1]. The evaluation occurs in two stages: (1) Embeddings are first learned in an unsupervised manner (i.e. without labels); (2) A simple regressor is trained to regress landmarks from the unsupervised embedding.

[1] Thewlis, James, Hakan Bilen, and Andrea Vedaldi. "Unsupervised learning of object landmarks by factorized spatial embeddings." Proceedings of the IEEE International Conference on Computer Vision. 2017.

( Image credit: Unsupervised learning of object landmarks by factorized spatial embeddings )

Paper Code Results Date Stars