zero-shot anomaly detection

19 papers with code • 2 benchmarks • 2 datasets

This task has no description! Would you like to contribute one?

Most implemented papers

WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

openvinotoolkit/anomalib CVPR 2023

Visual anomaly classification and segmentation are vital for automating industrial quality inspection.

AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection

zqhang/anomalyclip 29 Oct 2023

It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly.

Towards Zero-shot Point Cloud Anomaly Detection: A Multi-View Projection Framework

hustcyq/mvp-pclip 20 Sep 2024

Following zero-shot image anomaly detection methods, pre-trained VLMs are utilized to detect anomalies on these depth images.

MAEDAY: MAE for few and zero shot AnomalY-Detection

elischwartz/maeday 25 Nov 2022

We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD).

Zero-Shot Anomaly Detection via Batch Normalization

aodongli/zero-shot-ad-via-batch-norm NeurIPS 2023

Anomaly detection (AD) plays a crucial role in many safety-critical application domains.

Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot Anomaly Localization

hq-deng/AnoVL 30 Aug 2023

On top of the proposed AnoCLIP, we further introduce a test-time adaptation (TTA) mechanism to refine visual anomaly localization results, where we optimize a lightweight adapter in the visual encoder using AnoCLIP's pseudo-labels and noise-corrupted tokens.

GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection

zhangzjn/gpt-4v-ad 5 Nov 2023

Large Multimodal Model (LMM) GPT-4V(ision) endows GPT-4 with visual grounding capabilities, making it possible to handle certain tasks through the Visual Question Answering (VQA) paradigm.

VisionGPT: LLM-Assisted Real-Time Anomaly Detection for Safe Visual Navigation

ais-clemson/visiongpt 19 Mar 2024

This paper explores the potential of Large Language Models(LLMs) in zero-shot anomaly detection for safe visual navigation.

FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization

casia-iva-lab/filo 21 Apr 2024

Zero-shot anomaly detection (ZSAD) methods entail detecting anomalies directly without access to any known normal or abnormal samples within the target item categories.

From Zero to Hero: Cold-Start Anomaly Detection

talreiss/coldfusion 30 May 2024

This paper studies the realistic but underexplored cold-start setting where an anomaly detection model is initialized using zero-shot guidance, but subsequently receives a small number of contaminated observations (namely, that may include anomalies).