Amazon Mechanical Turk (AMT) is used to collect annotations on HowTo100M videos. 30k 60-second clips are randomly sampled from 9,421 videos and present each clip to the turkers, who are asked to select a video segment containing a single, self-contained scene. After this segment selection step, another group of workers are asked to write descriptions for each displayed segment. Narrations are not provided to the workers to ensure that their written queries are based on visual content only. These final video segments are 10-20 seconds long on average, and the length of queries ranges from 8 to 20 words. From this process, 51,390 queries are collected for 24k 60-second clips from 9,371 videos in HowTo100M, on average 2-3 queries per clip. The video clips and its associated queries are split into 80% train, 10% val and 10% test.

Source: HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training

Papers


Paper Code Results Date Stars

Dataset Loaders


Tasks


Similar Datasets


License


  • Unknown

Modalities


Languages