Accurate and Fast reconstruction of Porous Media from Extremely Limited Information Using Conditional Generative Adversarial Network

4 Apr 2019 Junxi Feng Xiaohai He Qizhi Teng Chao Ren Honggang Chen Yang Li

Porous media are ubiquitous in both nature and engineering applications, thus their modelling and understanding is of vital importance. In contrast to direct acquisition of three-dimensional (3D) images of such medium, obtaining its sub-region (s) like two-dimensional (2D) images or several small areas could be much feasible... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet