Independent Component Analysis based on multiple data-weighting

31 May 2019  ·  Andrzej Bedychaj, Przemysław Spurek, Łukasz Struskim, Jacek Tabor ·

Independent Component Analysis (ICA) - one of the basic tools in data analysis - aims to find a coordinate system in which the components of the data are independent. In this paper we present Multiple-weighted Independent Component Analysis (MWeICA) algorithm, a new ICA method which is based on approximate diagonalization of weighted covariance matrices. Our idea is based on theoretical result, which says that linear independence of weighted data (for gaussian weights) guarantees independence. Experiments show that MWeICA achieves better results to most state-of-the-art ICA methods, with similar computational time.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.