Multi-Turn Beam Search for Neural Dialogue Modeling

1 Jun 2019Ilia KulikovJason LeeKyunghyun Cho

In neural dialogue modeling, a neural network is trained to predict the next utterance, and at inference time, an approximate decoding algorithm is used to generate next utterances given previous ones. While this autoregressive framework allows us to model the whole conversation during training, inference is highly suboptimal, as a wrong utterance can affect future utterances... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet