On the Correctness and Sample Complexity of Inverse Reinforcement Learning

NeurIPS 2019  ·  Abi Komanduru, Jean Honorio ·

Inverse reinforcement learning (IRL) is the problem of finding a reward function that generates a given optimal policy for a given Markov Decision Process. This paper looks at an algorithmic-independent geometric analysis of the IRL problem with finite states and actions. A L1-regularized Support Vector Machine formulation of the IRL problem motivated by the geometric analysis is then proposed with the basic objective of the inverse reinforcement problem in mind: to find a reward function that generates a specified optimal policy. The paper further analyzes the proposed formulation of inverse reinforcement learning with $n$ states and $k$ actions, and shows a sample complexity of $O(n^2 \log (nk))$ for recovering a reward function that generates a policy that satisfies Bellman's optimality condition with respect to the true transition probabilities.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here