CANZSL: Cycle-Consistent Adversarial Networks for Zero-Shot Learning from Natural Language

21 Sep 2019Zhi ChenJingjing LiYadan LuoZi HuangYang Yang

Existing methods using generative adversarial approaches for Zero-Shot Learning (ZSL) aim to generate realistic visual features from class semantics by a single generative network, which is highly under-constrained. As a result, the previous methods cannot guarantee that the generated visual features can truthfully reflect the corresponding semantics... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet