Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning

ICLR 2020  ·  Hengyuan Hu, Jakob N. Foerster ·

In recent years we have seen fast progress on a number of benchmark problems in AI, with modern methods achieving near or super human performance in Go, Poker and Dota. One common aspect of all of these challenges is that they are by design adversarial or, technically speaking, zero-sum. In contrast to these settings, success in the real world commonly requires humans to collaborate and communicate with others, in settings that are, at least partially, cooperative. In the last year, the card game Hanabi has been established as a new benchmark environment for AI to fill this gap. In particular, Hanabi is interesting to humans since it is entirely focused on theory of mind, i.e., the ability to effectively reason over the intentions, beliefs and point of view of other agents when observing their actions. Learning to be informative when observed by others is an interesting challenge for Reinforcement Learning (RL): Fundamentally, RL requires agents to explore in order to discover good policies. However, when done naively, this randomness will inherently make their actions less informative to others during training. We present a new deep multi-agent RL method, the Simplified Action Decoder (SAD), which resolves this contradiction exploiting the centralized training phase. During training SAD allows other agents to not only observe the (exploratory) action chosen, but agents instead also observe the greedy action of their team mates. By combining this simple intuition with best practices for multi-agent learning, SAD establishes a new SOTA for learning methods for 2-5 players on the self-play part of the Hanabi challenge. Our ablations show the contributions of SAD compared with the best practice components. All of our code and trained agents are available at https://github.com/facebookresearch/Hanabi_SAD.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here