1D-Convolutional Capsule Network for Hyperspectral Image Classification

23 Mar 2019  ·  Hai-Tao Zhang, Lingguo Meng, Xian Wei, Xiaoliang Tang, Xuan Tang, Xingping Wang, Bo Jin, Wei Yao ·

Recently, convolutional neural networks (CNNs) have achieved excellent performances in many computer vision tasks. Specifically, for hyperspectral images (HSIs) classification, CNNs often require very complex structure due to the high dimension of HSIs. The complex structure of CNNs results in prohibitive training efforts. Moreover, the common situation in HSIs classification task is the lack of labeled samples, which results in accuracy deterioration of CNNs. In this work, we develop an easy-to-implement capsule network to alleviate the aforementioned problems, i.e., 1D-convolution capsule network (1D-ConvCapsNet). Firstly, 1D-ConvCapsNet separately extracts spatial and spectral information on spatial and spectral domains, which is more lightweight than 3D-convolution due to fewer parameters. Secondly, 1D-ConvCapsNet utilizes the capsule-wise constraint window method to reduce parameter amount and computational complexity of conventional capsule network. Finally, 1D-ConvCapsNet obtains accurate predictions with respect to input samples via dynamic routing. The effectiveness of the 1D-ConvCapsNet is verified by three representative HSI datasets. Experimental results demonstrate that 1D-ConvCapsNet is superior to state-of-the-art methods in both the accuracy and training effort.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here