4S-DT: Self Supervised Super Sample Decomposition for Transfer learning with application to COVID-19 detection

26 Jun 2020  ·  Asmaa Abbas, Mohammed M. Abdelsamea, Mohamed Gaber ·

Due to the high availability of large-scale annotated image datasets, knowledge transfer from pre-trained models showed outstanding performance in medical image classification. However, building a robust image classification model for datasets with data irregularity or imbalanced classes can be a very challenging task, especially in the medical imaging domain. In this paper, we propose a novel deep convolutional neural network, we called Self Supervised Super Sample Decomposition for Transfer learning (4S-DT) model. 4S-DT encourages a coarse-to-fine transfer learning from large-scale image recognition tasks to a specific chest X-ray image classification task using a generic self-supervised sample decomposition approach. Our main contribution is a novel self-supervised learning mechanism guided by a super sample decomposition of unlabelled chest X-ray images. 4S-DT helps in improving the robustness of knowledge transformation via a downstream learning strategy with a class-decomposition layer to simplify the local structure of the data. 4S-DT can deal with any irregularities in the image dataset by investigating its class boundaries using a downstream class-decomposition mechanism. We used 50,000 unlabelled chest X-ray images to achieve our coarse-to-fine transfer learning with an application to COVID-19 detection, as an exemplar. 4S-DT has achieved a high accuracy of 99.8% (95% CI: 99.44%, 99.98%) in the detection of COVID-19 cases on a large dataset and an accuracy of 97.54% (95%$ CI: 96.22%, 98.91%) on an extended test set enriched by augmented images of a small dataset, out of which all real COVID-19 cases were detected, which was the highest accuracy obtained when compared to other methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here