6-DOF Grasping for Target-driven Object Manipulation in Clutter

8 Dec 2019  ·  Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris Paxton, Dieter Fox ·

Grasping in cluttered environments is a fundamental but challenging robotic skill. It requires both reasoning about unseen object parts and potential collisions with the manipulator. Most existing data-driven approaches avoid this problem by limiting themselves to top-down planar grasps which is insufficient for many real-world scenarios and greatly limits possible grasps. We present a method that plans 6-DOF grasps for any desired object in a cluttered scene from partial point cloud observations. Our method achieves a grasp success of 80.3%, outperforming baseline approaches by 17.6% and clearing 9 cluttered table scenes (which contain 23 unknown objects and 51 picks in total) on a real robotic platform. By using our learned collision checking module, we can even reason about effective grasp sequences to retrieve objects that are not immediately accessible. Supplementary video can be found at https://youtu.be/w0B5S-gCsJk.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here