Impact of Training Instance Selection on Domain-Specific Entity Extraction using BERT

State of the art performances for entity extraction tasks are achieved by supervised learning, specifically, by fine-tuning pretrained language models such as BERT. As a result, annotating application specific data is the first step in many use cases. However, no practical guidelines are available for annotation requirements. This work supports practitioners by empirically answering the frequently asked questions (1) how many training samples to annotate? (2) which examples to annotate? We found that BERT achieves up to 80% F1 when fine-tuned on only 70 training examples, especially on biomedical domain. The key features for guiding the selection of high performing training instances are identified to be pseudo-perplexity and sentence-length. The best training dataset constructed using our proposed selection strategy shows F1 score that is equivalent to a random selection with twice the sample size. The requirement of only a small number of training data implies cheaper implementations and opens door to wider range of applications.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here