A Bayesian Decision Tree Algorithm

10 Jan 2019  ·  Giuseppe Nuti, Lluís Antoni Jiménez Rugama, Andreea-Ingrid Cross ·

Bayesian Decision Trees are known for their probabilistic interpretability. However, their construction can sometimes be costly. In this article we present a general Bayesian Decision Tree algorithm applicable to both regression and classification problems. The algorithm does not apply Markov Chain Monte Carlo and does not require a pruning step. While it is possible to construct a weighted probability tree space we find that one particular tree, the greedy-modal tree (GMT), explains most of the information contained in the numerical examples. This approach seems to perform similarly to Random Forests.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods