A Case Study of Deep-Learned Activations via Hand-Crafted Audio Features

3 Jul 2019  ·  Olga Slizovskaia, Emilia Gómez, Gloria Haro ·

The explainability of Convolutional Neural Networks (CNNs) is a particularly challenging task in all areas of application, and it is notably under-researched in music and audio domain. In this paper, we approach explainability by exploiting the knowledge we have on hand-crafted audio features. Our study focuses on a well-defined MIR task, the recognition of musical instruments from user-generated music recordings. We compute the similarity between a set of traditional audio features and representations learned by CNNs. We also propose a technique for measuring the similarity between activation maps and audio features which typically presented in the form of a matrix, such as chromagrams or spectrograms. We observe that some neurons' activations correspond to well-known classical audio features. In particular, for shallow layers, we found similarities between activations and harmonic and percussive components of the spectrum. For deeper layers, we compare chromagrams with high-level activation maps as well as loudness and onset rate with deep-learned embeddings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here