A Closer Look at Double Backpropagation

16 Jun 2019  ·  Christian Etmann ·

In recent years, an increasing number of neural network models have included derivatives with respect to inputs in their loss functions, resulting in so-called double backpropagation for first-order optimization. However, so far no general description of the involved derivatives exists. Here, we cover a wide array of special cases in a very general Hilbert space framework, which allows us to provide optimized backpropagation rules for many real-world scenarios. This includes the reduction of calculations for Frobenius-norm-penalties on Jacobians by roughly a third for locally linear activation functions. Furthermore, we provide a description of the discontinuous loss surface of ReLU networks both in the inputs and the parameters and demonstrate why the discontinuities do not pose a big problem in reality.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods