A Closer Look at the Training Strategy for Modern Meta-Learning

The support/query (S/Q) episodic training strategy has been widely used in modern meta-learning algorithms and is believed to improve their generalization ability to test environments. This paper conducts a theoretical investigation of this training strategy on generalization. From a stability perspective, we analyze the generalization error bound of generic meta-learning algorithms trained with such strategy. We show that the S/Q episodic training strategy naturally leads to a counterintuitive generalization bound of $O(1/\sqrt{n})$, which only depends on the task number $n$ but independent of the inner-task sample size $m$. Under the common assumption $m<<n$ for few-shot learning, the bound of $O(1/\sqrt{n})$ implies strong generalization guarantees for modern meta-learning algorithms in the few-shot regime. To further explore the influence of training strategies on generalization, we propose a leave-one-out (LOO) training strategy for meta-learning and compare it with S/Q training. Experiments on standard few-shot regression and classification tasks with popular meta-learning algorithms validate our analysis.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here