A Communication Efficient Collaborative Learning Framework for Distributed Features

24 Dec 2019  ·  Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, Qiang Yang ·

We introduce a collaborative learning framework allowing multiple parties having different sets of attributes about the same user to jointly build models without exposing their raw data or model parameters. In particular, we propose a Federated Stochastic Block Coordinate Descent (FedBCD) algorithm, in which each party conducts multiple local updates before each communication to effectively reduce the number of communication rounds among parties, a principal bottleneck for collaborative learning problems. We analyze theoretically the impact of the number of local updates and show that when the batch size, sample size, and the local iterations are selected appropriately, within $T$ iterations, the algorithm performs $\mathcal{O}(\sqrt{T})$ communication rounds and achieves some $\mathcal{O}(1/\sqrt{T})$ accuracy (measured by the average of the gradient norm squared). The approach is supported by our empirical evaluations on a variety of tasks and datasets, demonstrating advantages over stochastic gradient descent (SGD) approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here