A Comparison of Neural Models for Word Ordering

We compare several language models for the word-ordering task and propose a new bag-to-sequence neural model based on attention-based sequence-to-sequence models. We evaluate the model on a large German WMT data set where it significantly outperforms existing models... (read more)

PDF Abstract WS 2017 PDF WS 2017 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet