A Comprehensive Empirical Study of Bias Mitigation Methods for Machine Learning Classifiers

7 Jul 2022  ·  Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman ·

Software bias is an increasingly important operational concern for software engineers. We present a large-scale, comprehensive empirical study of 17 representative bias mitigation methods for Machine Learning (ML) classifiers, evaluated with 11 ML performance metrics (e.g., accuracy), 4 fairness metrics, and 20 types of fairness-performance trade-off assessment, applied to 8 widely-adopted software decision tasks. The empirical coverage is much more comprehensive, covering the largest numbers of bias mitigation methods, evaluation metrics, and fairness-performance trade-off measures compared to previous work on this important software property. We find that (1) the bias mitigation methods significantly decrease ML performance in 53% of the studied scenarios (ranging between 42%~66% according to different ML performance metrics); (2) the bias mitigation methods significantly improve fairness measured by the 4 used metrics in 46% of all the scenarios (ranging between 24%~59% according to different fairness metrics); (3) the bias mitigation methods even lead to decrease in both fairness and ML performance in 25% of the scenarios; (4) the effectiveness of the bias mitigation methods depends on tasks, models, the choice of protected attributes, and the set of metrics used to assess fairness and ML performance; (5) there is no bias mitigation method that can achieve the best trade-off in all the scenarios. The best method that we find outperforms other methods in 30% of the scenarios. Researchers and practitioners need to choose the bias mitigation method best suited to their intended application scenario(s).

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here