A Comprehensively Tight Analysis of Gradient Descent for PCA

NeurIPS 2021  ·  Zhiqiang Xu, Ping Li ·

We study the Riemannian gradient method for PCA on which a crucial fact is that despite the simplicity of the considered setting, i.e., deterministic version of Krasulina's method, the convergence rate has not been well-understood yet. In this work, we provide a general tight analysis for the gap-dependent rate at $O(\frac{1}{\Delta}\log\frac{1}{\epsilon})$ that holds for any real symmetric matrix. More importantly, when the gap $\Delta$ is significantly smaller than the target accuracy $\epsilon$ on the objective sub-optimality of the final solution, the rate of this type is actually not tight any more, which calls for a worst-case rate. We further give the first worst-case analysis that achieves a rate of convergence at $O(\frac{1}{\epsilon}\log\frac{1}{\epsilon})$. The two analyses naturally roll out a comprehensively tight convergence rate at $O(\frac{1}{\max\{\Delta,\epsilon\}}\hskip-.3em\log\frac{1}{\epsilon})$. Particularly, our gap-dependent analysis suggests a new promising learning rate for stochastic variance reduced PCA algorithms. Experiments are conducted to confirm our findings as well.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods