A Concurrent Switching Model for Traffic Congestion Control

11 Apr 2022  ·  Hossein Rastgoftar, Xun Liu, Jean-Baptiste Jeannin ·

We introduce a new conservation-based approach for traffic coordination modeling and control in a network of interconnected roads (NOIR) with switching movement phase rotations at every NOIR junction. For modeling of traffic evolution, we first assume that the movement phase rotation is cyclic at every NOIR junction, but the duration of each movement phase can be arbitrarily commanded by traffic signals. Then, we propose a novel concurrent switching dynamics (CSD) with deterministic transitions among a finite number of states, representing the NOIR movement phases. We define the CSD control as a cyclic receding horizon optimization problem with periodic quadratic cost and constraints. More specifically, the cost is defined so that the traffic density is minimized and the boundary inflow is uniformly distributed over the boundary inlet roads, whereas the cost parameters are periodically changed with time. The constraints are linear and imposed by a trapezoidal fundamental diagram at every NOIR road so that traffic feasibility is assured and traffic over-saturation is avoided. The success of the proposed traffic boundary control is demonstrated by simulation of traffic congestion control in Downtown Phoenix.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here