A Constraint Programming Approach for Mining Sequential Patterns in a Sequence Database

27 Nov 2013  ·  Jean-Philippe Métivier, Samir Loudni, Thierry Charnois ·

Constraint-based pattern discovery is at the core of numerous data mining tasks. Patterns are extracted with respect to a given set of constraints (frequency, closedness, size, etc). In the context of sequential pattern mining, a large number of devoted techniques have been developed for solving particular classes of constraints. The aim of this paper is to investigate the use of Constraint Programming (CP) to model and mine sequential patterns in a sequence database. Our CP approach offers a natural way to simultaneously combine in a same framework a large set of constraints coming from various origins. Experiments show the feasibility and the interest of our approach.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here