A Contract Theory based Incentive Mechanism for Federated Learning

12 Aug 2021  ·  Mengmeng Tian, Yuxin Chen, YuAn Liu, Zehui Xiong, Cyril Leung, Chunyan Miao ·

Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients. To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients. It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients. This paper aims to propose a contract theory based FL task training model towards minimizing incentive budget subject to clients being individually rational (IR) and incentive compatible (IC) in each FL training round. We design a two-dimensional contract model by formally defining two private types of clients, namely data quality and computation effort. To effectively aggregate the trained models, a contract-based aggregator is proposed. We analyze the feasible and optimal contract solutions to the proposed contract model. %Experimental results demonstrate that the proposed framework and contract model can effective improve the generation accuracy of FL tasks. Experimental results show that the generalization accuracy of the FL tasks can be improved by the proposed incentive mechanism where contract-based aggregation is applied.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here