A Contribution-based Device Selection Scheme in Federated Learning

10 Mar 2022  ·  Shashi Raj Pandey, Lam D. Nguyen, Petar Popovski ·

In a Federated Learning (FL) setup, a number of devices contribute to the training of a common model. We present a method for selecting the devices that provide updates in order to achieve improved generalization, fast convergence, and better device-level performance. We formulate a min-max optimization problem and decompose it into a primal-dual setup, where the duality gap is used to quantify the device-level performance. Our strategy combines \emph{exploration} of data freshness through a random device selection with \emph{exploitation} through simplified estimates of device contributions. This improves the performance of the trained model both in terms of generalization and personalization. A modified Truncated Monte-Carlo (TMC) method is applied during the exploitation phase to estimate the device's contribution and lower the communication overhead. The experimental results show that the proposed approach has a competitive performance, with lower communication overhead and competitive personalization performance against the baseline schemes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here