A Convergence Analysis of Log-Linear Training

NeurIPS 2011  ·  Simon Wiesler, Hermann Ney ·

Log-linear models are widely used probability models for statistical pattern recognition. Typically, log-linear models are trained according to a convex criterion. In recent years, the interest in log-linear models has greatly increased. The optimization of log-linear model parameters is costly and therefore an important topic, in particular for large-scale applications. Different optimization algorithms have been evaluated empirically in many papers. In this work, we analyze the optimization problem analytically and show that the training of log-linear models can be highly ill-conditioned. We verify our findings on two handwriting tasks. By making use of our convergence analysis, we obtain good results on a large-scale continuous handwriting recognition task with a simple and generic approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here