A Deep Learning Approach for Survival Clustering without End-of-life Signals

The goal of survival clustering is to map subjects (e.g., users in a social network, patients in a medical study) to $K$ clusters ranging from low-risk to high-risk. Existing survival methods assume the presence of clear \textit{end-of-life} signals or introduce them artificially using a pre-defined timeout... In this paper, we forego this assumption and introduce a loss function that differentiates between the empirical lifetime distributions of the clusters using a modified Kuiper statistic. We learn a deep neural network by optimizing this loss, that performs a soft clustering of users into survival groups. We apply our method to a social network dataset with over 1M subjects, and show significant improvement in C-index compared to alternatives. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here