A Discussion on Solving Partial Differential Equations using Neural Networks

15 Apr 2019  ·  Tim Dockhorn ·

Can neural networks learn to solve partial differential equations (PDEs)? We investigate this question for two (systems of) PDEs, namely, the Poisson equation and the steady Navier--Stokes equations. The contributions of this paper are five-fold. (1) Numerical experiments show that small neural networks (< 500 learnable parameters) are able to accurately learn complex solutions for systems of partial differential equations. (2) It investigates the influence of random weight initialization on the quality of the neural network approximate solution and demonstrates how one can take advantage of this non-determinism using ensemble learning. (3) It investigates the suitability of the loss function used in this work. (4) It studies the benefits and drawbacks of solving (systems of) PDEs with neural networks compared to classical numerical methods. (5) It proposes an exhaustive list of possible directions of future work.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here