A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN

1 Mar 2021  ·  He Zhang, Zhixiong Nan, Tao Yang, Yifan Liu, Nanning Zheng ·

In autonomous driving, perceiving the driving behaviors of surrounding agents is important for the ego-vehicle to make a reasonable decision. In this paper, we propose a neural network model based on trajectories information for driving behavior recognition. Unlike existing trajectory-based methods that recognize the driving behavior using the hand-crafted features or directly encoding the trajectory, our model involves a Multi-Scale Convolutional Neural Network (MSCNN) module to automatically extract the high-level features which are supposed to encode the rich spatial and temporal information. Given a trajectory sequence of an agent as the input, firstly, the Bi-directional Long Short Term Memory (Bi-LSTM) module and the MSCNN module respectively process the input, generating two features, and then the two features are fused to classify the behavior of the agent. We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here