A Fast Algorithm Based on a Sylvester-like Equation for LS Regression with GMRF Prior

18 Sep 2017  ·  Qi Wei, Emilie Chouzenoux, Jean-Yves Tourneret, Jean-Christophe Pesquet ·

This paper presents a fast approach for penalized least squares (LS) regression problems using a 2D Gaussian Markov random field (GMRF) prior. More precisely, the computation of the proximity operator of the LS criterion regularized by different GMRF potentials is formulated as solving a Sylvester-like matrix equation. By exploiting the structural properties of GMRFs, this matrix equation is solved columnwise in an analytical way. The proposed algorithm can be embedded into a wide range of proximal algorithms to solve LS regression problems including a convex penalty. Experiments carried out in the case of a constrained LS regression problem arising in a multichannel image processing application, provide evidence that an alternating direction method of multipliers performs quite efficiently in this context.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here