A Fast and Accurate Pitch Estimation Algorithm Based on the Pseudo Wigner-Ville Distribution

27 Oct 2022  ·  Yisi Liu, Peter Wu, Alan W Black, Gopala K. Anumanchipalli ·

Estimation of fundamental frequency (F0) in voiced segments of speech signals, also known as pitch tracking, plays a crucial role in pitch synchronous speech analysis, speech synthesis, and speech manipulation. In this paper, we capitalize on the high time and frequency resolution of the pseudo Wigner-Ville distribution (PWVD) and propose a new PWVD-based pitch estimation method. We devise an efficient algorithm to compute PWVD faster and use cepstrum-based pre-filtering to avoid cross-term interference. Evaluating our approach on a database with speech and electroglottograph (EGG) recordings yields a state-of-the-art mean absolute error (MAE) of around 4Hz. Our approach is also effective at voiced/unvoiced classification and handling sudden frequency changes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here