A Foundation for Wireless Channel Prediction and Full Ray Makeup Estimation Using an Unmanned Vehicle

20 Feb 2022  ·  Chitra R. Karanam, Yasamin Mostofi ·

In this paper, we consider the problem of wireless channel prediction, where we are interested in predicting the channel quality at unvisited locations in an area of interest, based on a small number of prior received power measurements collected by an unmanned vehicle in the area. We propose a new framework for channel prediction that can not only predict the detailed variations of the received power, but can also predict the detailed makeup of the wireless rays (i.e., amplitude, angle-of-arrival, and phase of all the incoming paths). More specifically, we show how an enclosure-based robotic route design ensures that the received power measurements at the prior measurement locations can be utilized to fully predict detailed ray parameters at unvisited locations. We then show how to first estimate the detailed ray parameters at the prior measurement route and then fully extend them to predict the detailed ray makeup at unvisited locations in the workspace. We experimentally validate our proposed framework through extensive real-world experiments in three different areas, and show that our approach can accurately predict the received channel power and the detailed makeup of the rays at unvisited locations in an area, considerably outperforming the state-of-the-art in wireless channel prediction.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here