A Framework for Understanding Model Extraction Attack and Defense
The privacy of machine learning models has become a significant concern in many emerging Machine-Learning-as-a-Service applications, where prediction services based on well-trained models are offered to users via pay-per-query. The lack of a defense mechanism can impose a high risk on the privacy of the server's model since an adversary could efficiently steal the model by querying only a few `good' data points. The interplay between a server's defense and an adversary's attack inevitably leads to an arms race dilemma, as commonly seen in Adversarial Machine Learning. To study the fundamental tradeoffs between model utility from a benign user's view and privacy from an adversary's view, we develop new metrics to quantify such tradeoffs, analyze their theoretical properties, and develop an optimization problem to understand the optimal adversarial attack and defense strategies. The developed concepts and theory match the empirical findings on the `equilibrium' between privacy and utility. In terms of optimization, the key ingredient that enables our results is a unified representation of the attack-defense problem as a min-max bi-level problem. The developed results will be demonstrated by examples and experiments.
PDF Abstract