A Generalized Statistical Model for THz wireless Channel with Random Atmospheric Absorption

28 Oct 2023  ·  Pranay Bhardwaj, S. M. Zafaruddin ·

Current statistical channel models for Terahertz (THz) wireless communication primarily concentrate on the sub-THz band, mostly with $\alpha$-$\mu$ and Gaussian mixture fading distributions for short-term fading and deterministic modeling for atmospheric absorption. In this paper, we develop a generalized statistical model for signal propagation at THz frequencies considering random path-loss employing Gamma distribution for the molecular absorption coefficient, short-term fading characterized by the $\alpha$-$\eta$-$\kappa$-$\mu$ distribution, antenna misalignment errors, and transceiver hardware impairments. The proposed model can handle various propagation scenarios, including indoor and outdoor environments, backhaul/fronthaul situations, and complex urban settings. Using Fox's H-functions, we present the probability density function (PDF) and cumulative distribution function (CDF) that capture the combined statistical effects of channel impairments. We analyze the outage probability of a THz link to demonstrate the analytical tractability of the proposed generalized model. We present computer simulations to demonstrate the efficacy of the proposed model for performance assessment with the statistical effect of atmospheric absorption.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here