A Generative Model for Natural Sounds Based on Latent Force Modelling

2 Feb 2018  ·  William J. Wilkinson, Joshua D. Reiss, Dan Stowell ·

Recent advances in analysis of subband amplitude envelopes of natural sounds have resulted in convincing synthesis, showing subband amplitudes to be a crucial component of perception. Probabilistic latent variable analysis is particularly revealing, but existing approaches don't incorporate prior knowledge about the physical behaviour of amplitude envelopes, such as exponential decay and feedback... We use latent force modelling, a probabilistic learning paradigm that incorporates physical knowledge into Gaussian process regression, to model correlation across spectral subband envelopes. We augment the standard latent force model approach by explicitly modelling correlations over multiple time steps. Incorporating this prior knowledge strengthens the interpretation of the latent functions as the source that generated the signal. We examine this interpretation via an experiment which shows that sounds generated by sampling from our probabilistic model are perceived to be more realistic than those generated by similar models based on nonnegative matrix factorisation, even in cases where our model is outperformed from a reconstruction error perspective. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here