A Generic Network Compression Framework for Sequential Recommender Systems

21 Apr 2020Yang SunFajie YuanMin YangGuoao WeiZhou ZhaoDuo Liu

Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations. Current state-of-the-art sequential recommender models are typically based on a sandwich-structured deep neural network, where one or more middle (hidden) layers are placed between the input embedding layer and output softmax layer... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper