A Genetic Algorithm approach to Asymmetrical Blotto Games with Heterogeneous Valuations

26 Mar 2021  ·  Aymeric Vie ·

Blotto Games are a popular model of multi-dimensional strategic resource allocation. Two players allocate resources in different battlefields in an auction setting. While competition with equal budgets is well understood, little is known about strategic behavior under asymmetry of resources. We introduce a genetic algorithm, a search heuristic inspired from biological evolution, interpreted as social learning, to solve this problem. Most performant strategies are combined to create more performant strategies. Mutations allow the algorithm to efficiently scan the space of possible strategies, and consider a wide diversity of deviations. We show that our genetic algorithm converges to the analytical Nash equilibrium of the symmetric Blotto game. We present the solution concept it provides for asymmetrical Blotto games. It notably sees the emergence of "guerilla warfare" strategies, consistent with empirical and experimental findings. The player with less resources learns to concentrate its resources to compensate for the asymmetry of competition. When players value battlefields heterogeneously, counter strategies and bidding focus is obtained in equilibrium. These features are consistent with empirical and experimental findings, and provide a learning foundation for their existence.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here