A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate Detection

22 Feb 2023  ·  Wei Tang, Kangning Cui, Raymond H. Chan ·

Diabetic retinopathy (DR) is a leading global cause of blindness. Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss. However, the unique characteristics of hard exudates, ranging from their inconsistent shapes to indistinct boundaries, pose significant challenges to existing segmentation techniques. To address these issues, we present a novel supervised contrastive learning framework to optimize hard exudate segmentation. Specifically, we introduce a patch-wise density contrasting scheme to distinguish between areas with varying lesion concentrations, and therefore improve the model's proficiency in segmenting small lesions. To handle the ambiguous boundaries, we develop a discriminative edge inspection module to dynamically analyze the pixels that lie around the boundaries and accurately delineate the exudates. Upon evaluation using the IDRiD dataset and comparison with state-of-the-art frameworks, our method exhibits its effectiveness and shows potential for computer-assisted hard exudate detection. The code to replicate experiments is available at github.com/wetang7/HECL/.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here