A Heaviside Function Approximation for Neural Network Binary Classification

2 Sep 2020Nathan TsoiYofti MilkessaMarynel Vázquez

Neural network binary classifiers are often evaluated on metrics like accuracy and $F_1$-Score, which are based on confusion matrix values (True Positives, False Positives, False Negatives, and True Negatives). However, these classifiers are commonly trained with a different loss, e.g. log loss... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet