A Hierarchical Multi-Output Nearest Neighbor Model for Multi-Output Dependence Learning

17 Oct 2014  ·  Richard G. Morris, Tony Martinez, Michael R. Smith ·

Multi-Output Dependence (MOD) learning is a generalization of standard classification problems that allows for multiple outputs that are dependent on each other. A primary issue that arises in the context of MOD learning is that for any given input pattern there can be multiple correct output patterns... This changes the learning task from function approximation to relation approximation. Previous algorithms do not consider this problem, and thus cannot be readily applied to MOD problems. To perform MOD learning, we introduce the Hierarchical Multi-Output Nearest Neighbor model (HMONN) that employs a basic learning model for each output and a modified nearest neighbor approach to refine the initial results. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here