A Higher-Order Kolmogorov-Smirnov Test

24 Mar 2019  ·  Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Aaditya Ramdas, Ryan J. Tibshirani ·

We present an extension of the Kolmogorov-Smirnov (KS) two-sample test, which can be more sensitive to differences in the tails. Our test statistic is an integral probability metric (IPM) defined over a higher-order total variation ball, recovering the original KS test as its simplest case. We give an exact representer result for our IPM, which generalizes the fact that the original KS test statistic can be expressed in equivalent variational and CDF forms. For small enough orders ($k \leq 5$), we develop a linear-time algorithm for computing our higher-order KS test statistic; for all others ($k \geq 6$), we give a nearly linear-time approximation. We derive the asymptotic null distribution for our test, and show that our nearly linear-time approximation shares the same asymptotic null. Lastly, we complement our theory with numerical studies.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here