A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics

18 Feb 2017 Yuchen Zhang Percy Liang Moses Charikar

We study the Stochastic Gradient Langevin Dynamics (SGLD) algorithm for non-convex optimization. The algorithm performs stochastic gradient descent, where in each step it injects appropriately scaled Gaussian noise to the update... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet