A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics

18 Feb 2017  ·  Yuchen Zhang, Percy Liang, Moses Charikar ·

We study the Stochastic Gradient Langevin Dynamics (SGLD) algorithm for non-convex optimization. The algorithm performs stochastic gradient descent, where in each step it injects appropriately scaled Gaussian noise to the update. We analyze the algorithm's hitting time to an arbitrary subset of the parameter space. Two results follow from our general theory: First, we prove that for empirical risk minimization, if the empirical risk is point-wise close to the (smooth) population risk, then the algorithm achieves an approximate local minimum of the population risk in polynomial time, escaping suboptimal local minima that only exist in the empirical risk. Second, we show that SGLD improves on one of the best known learnability results for learning linear classifiers under the zero-one loss.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here