A Hybrid Approach Towards Two Stage Bengali Question Classification Utilizing Smart Data Balancing Technique

Question classification (QC) is the primary step of the Question Answering (QA) system. Question Classification (QC) system classifies the questions in particular classes so that Question Answering (QA) System can provide correct answers for the questions. Our system categorizes the factoid type questions asked in natural language after extracting features of the questions. We present a two stage QC system for Bengali. It utilizes one dimensional convolutional neural network for classifying questions into coarse classes in the first stage. Word2vec representation of existing words of the question corpus have been constructed and used for assisting 1D CNN. A smart data balancing technique has been employed for giving data hungry convolutional neural network the advantage of a greater number of effective samples to learn from. For each coarse class, a separate Stochastic Gradient Descent (SGD) based classifier has been used in order to differentiate among the finer classes within that coarse class. TF-IDF representation of each word has been used as feature for the SGD classifiers implemented as part of second stage classification. Experiments show the effectiveness of our proposed method for Bengali question classification.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.