A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization

8 Jul 2019  ·  Quoc Tran-Dinh, Nhan H. Pham, Dzung T. Phan, Lam M. Nguyen ·

We introduce a new approach to develop stochastic optimization algorithms for a class of stochastic composite and possibly nonconvex optimization problems. The main idea is to combine two stochastic estimators to create a new hybrid one. We first introduce our hybrid estimator and then investigate its fundamental properties to form a foundational theory for algorithmic development. Next, we apply our theory to develop several variants of stochastic gradient methods to solve both expectation and finite-sum composite optimization problems. Our first algorithm can be viewed as a variant of proximal stochastic gradient methods with a single-loop, but can achieve $\mathcal{O}(\sigma^3\varepsilon^{-1} + \sigma \varepsilon^{-3})$-oracle complexity bound, matching the best-known ones from state-of-the-art double-loop algorithms in the literature, where $\sigma > 0$ is the variance and $\varepsilon$ is a desired accuracy. Then, we consider two different variants of our method: adaptive step-size and restarting schemes that have similar theoretical guarantees as in our first algorithm. We also study two mini-batch variants of the proposed methods. In all cases, we achieve the best-known complexity bounds under standard assumptions. We test our methods on several numerical examples with real datasets and compare them with state-of-the-arts. Our numerical experiments show that the new methods are comparable and, in many cases, outperform their competitors.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here