A Large-Scale Study of a Sleep Tracking and Improving Device with Closed-loop and Personalized Real-time Acoustic Stimulation

Various intervention therapies ranging from pharmaceutical to hi-tech tailored solutions have been available to treat difficulty in falling asleep commonly caused by insomnia in modern life. However, current techniques largely remain ill-suited, ineffective, and unreliable due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, an ability to keep people asleep during the night, and a large-scale effectiveness evaluation. Here, we introduce a novel sleep aid system, called Earable, that can continuously sense multiple head-based physiological signals and simultaneously enable closed-loop auditory stimulation to entrain brain activities in time for effective sleep promotion. We develop the system in a lightweight, comfortable, and user-friendly headband with a comprehensive set of algorithms and dedicated own-designed audio stimuli. We conducted multiple protocols from 883 sleep studies on 377 subjects (241 women, 119 men) wearing either a gold-standard device (PSG), Earable, or both concurrently. We demonstrate that our system achieves (1) a strong correlation (0.89 +/- 0.03) between the physiological signals acquired by Earable and those from the gold-standard PSG, (2) an 87.8 +/- 5.3% agreement on sleep scoring using our automatic real-time sleep staging algorithm with the consensus scored by three sleep technicians, and (3) a successful non-pharmacological stimulation alternative to effectively shorten the duration of sleep falling by 24.1 +/- 0.1 minutes. These results show that the efficacy of Earable exceeds existing techniques in intentions to promote fast falling asleep, track sleep state accurately, and achieve high social acceptance for real-time closed-loop personalized neuromodulation-based home sleep care.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here